Получить доступ
Эксклюзивный партнер
SkillFactory в Киргизии
burger
Каталог Аналитика и Data Science Полный курс по Data Science
Days
Hours
Minutes
Seconds
Длительность
Формат
онлайн
Партнер курса
13,5 мес
Старт
10 июля
Для кого специализация
Новичок
Вы хотите освоить профессию Data Scientist с нуля. Для этого вам не потребуется специальных знаний, выходящих за рамки школьной программы. На специализации вы получите достаточную математическую подготовку и опыт программирования на Python, чтобы решать задачи машинного обучения.
Программист
Всего за год вы пополните портфолио рекомендательной системой, нейронными сетями, выполняющими разные задачи, примете участие в соревнованиях на Kaggle, хакатонах. Опыт программирования позволит вам быстро включиться в процесс обучения и освоить профессию Junior Data Scientist.
Аналитик
Вы уже работаете с данными, SQL, хотите расширить набор приемов, научиться работать с облачными хранилищами, попрактиковаться с Hadoop и Spark или полностью сменить профессию. За год вы освоите новую область, прокачаетесь в Big Data и сможете смело двигаться в направлении Data Science.
Вы изучите
Deep Learning (Глубокое обучение)
ML в бизнесе

Math & Machine Learning

Инженерия данных (Data Engineering)
SQL
Python
Data-driven management
Курс по Data Engineer
Курс по нейронным сетям и deep learning
Курс по Machine Learning
Курс по математике для Data Science
Курс «Python для анализа данных»

Введение в Machine Learning

Краткая программа
специализации

0

Введение в профессию

Введение в онлайн обучение
Обзор профессии Data Scientist
INTRO
2 модуля,
1 неделя
8 модулей,
7 недель
Python
Введение в программирование на Python
Основные типы данных в Python
Условные операторы
Циклы
Функции — базовое и продвинутое использование
Стандарты оформления кода в Python

Основы программирования на Python

1
9 модулей,
7 недель
Python
Инструменты для Data Science
Анализ данных на основе библиотек NumPy и Pandas
Визуализация данных с помощью Matplotlib, Seaborn и Plotly
Очистка данных и Feature Engineering
Объектно-ориентированное программирование и отладка кода в Python
Проект. Анализ резюме с платформы HeadHunter

Python для анализа данных

2
3

Подгрузка данных

Выгрузка данных из разных источников с помощью Python
Парсинг HTML-страниц из Интернета и API
Основы языка SQL для работы с базами данных
Выгрузка информации из баз данных с помощью SQL и Python
Проект. Анализ вакансий из базы данных HeadHunter
Python, SQL
9 модулей,
7 недель
4

Разведывательный анализ данных

Введение в разведывательный анализ данных на Python
Основы математической статистики и проверка статистических гипотез
Основы A/B-тестирования
Проектирование признаков (Feature Engineering)
Проектирование и управление экспериментами
Знакомство с платформой Kaggle
Проект. Выявление накрутки рейтинга отелей на Booking. Соревнование на Kaggle
EDA, KAGGLE
8 модулей,
7 недель
5

Введение в машинное обучение

Теория машинного обучения
Обучение с учителем: классификация и регрессия
Обучение без учителя: кластеризации и понижения размерности
Валидация данных и оценка качества моделей
Отбор и селекция признаков
Оптимизация гиперпараметров и улучшение качества модели
Продвинутые методы машинного обучения
Проект. Повышение эффективности маркетинговой кампании банка
ML
9 модулей, 9 недель
6

Математика в машинном обучении. Часть I

Линейная алгебра в контексте линейных методов
Математический анализ и методы оптимизации в контексте задачи оптимизации
Проект. Прогнозирование длительности поездки в такси
MATH&ML
7 модулей,
5 недель
7

Математика в машинном обучении. Часть II

Теория вероятности в контексте методов машинного обучения
Математика в контексте алгоритма деревьев решений
Математика в контексте ансамблевых методов
Математика в контексте обучения без учителя: кластеризация и техники понижения размерности
Проект. Сегментация клиентов онлайн-магазина подарков
MATH&ML
6 модулей,
5 недель
8

ML в бизнесе

Прогнозирование временных рядов
Построение рекомендательных систем
Подготовка модели к production и deploy
Оценка эффективности моделей в реальных бизнес-задачах
Воспроизводимость и контейнеризация приложений
Сервисная архитектура и оркестрация приложений
MATH&ML, DS-PROD
7 модулей,
7 недель
9

Финальный проект

По итогам вашего обучения вам предстоит самостоятельно выполнить дипломный проект на выбранную тематику, показав все, чему вы научились в процессе обучения. В конце дипломного проекта вам предстоит подготовить свое решение и презентацию, а также защитить проект перед дипломной комиссией, состоящей из экспертов в области Data Science. Эксперты оценят результаты вашей работы, проведут Code Review и дадут развивающую обратную связь!
10

Введение в Deep Learning (бонусный раздел)

Введение в нейронные сети
Фреймворки для глубокого обучения
Математика для нейронных сетей
Введение в CV. Сверточные нейронные сети
Fine-tuning & Transfer Learning
Введение в NLP. Рекуррентные нейронные сети
DL
6 модулей
11

Введение в Deep Engineering (бонусный раздел)

Современные хранилища данных
Экосистема Hadoop

DE
2 модуля
Что ждет вас во время учебы?
Смена профессии — очень сложный процесс. Недостаточно просто выучить новые технологии — требуется освоить новые подходы и новые способы мышления. В одиночку с этим справиться сложно. Мы станем вашим партнером в обучении, который не просто дает учебные материалы, но и мотивирует их изучать и применять на практике.
Эксперты & поддержка
Команда наставников проверяет и комментирует ваши работы, помогает разобраться в сложностях и обучает собственным профессиональным приёмам.
Сообщество студентов
Вы будете учиться в группе таких же новичков, как и вы, давать друг другу обратную связь на ваши проекты, обмениваться кодом, помогать искать ошибки и делиться бизнес-задачами.
Помощь
координатора
Начиная с первых недель обучения тьютор поможет вам определить карьерные цели, а в течение программы — не сойти с намеченного пути.
Взаимодействие с участниками разных направлений, которое способствует развитию soft skills.
• Включаем в курсы задачи и вопросы из реальных собеседований
• Проводим онлайн-тренировки технических собеседований
• Помогаем составить резюме
Во время обучения студенты решают настоящие практические задачи и тренируются на настоящих кейсах.
Определенные направления подготовки дают возможность получить реальный стаж и опыт
Студенты отрабатывают навыки на практике и могут пообщаться с потенциальными работодателями.
Что вы будете уметь после обучения
Junior Data Scientist
Я уверенно могу:
Использовать основные алгоритмические конструкции и структуры данных Python для проектирования алгоритмов

Получать данные из веб-источников или по API

Визуализировать данные с помощью Pandas, Matplotlib

Создавать модели с помощью классического машинного обучения для решения задач Data Science (линейные модели, деревья решений, ансамблевые модели)

Оценивать качество модели вне зависимости от задачи

Применять методы математического анализа, линейной алгебры, статистики и теории вероятности для обработки данных

Строить математические и ML модели с использованием временных рядов

Применять алгоритмы для рекомендательных систем

Интегрировать решение в продакшн и в бизнес в целом

Работать с Github и Kaggle


Команда разработки профессии
  • Андрей Зимовнов
    Ведущий преподаватель специализации, старший разработчик в Яндекс.Дзен
  • Дмитрий Коробченко
    Deep Learning R&D Engineer, NVIDIA
  • Эмиль Магеррамов
    BIOCAD,
    Руководитель группы сервисов вычислительной химии

  • Антон Киселев
    Head of R&D, компания EORA
  • Полина Полунина
    Ex-руководитель Data Science в группе «М.Видео — Эльдорадо». Куратор в SkillFactory
Что получает студент
Ментор из сферы
Data Science
На протяжении обучения вам помогает ментор с реальным опытом в Data Science
Соревнования на Kaggle в курсах по Machine learning и Deep Learning
Cоревнования
и хакатоны
Записаться на курс
-40%
6 202 сом/мес
10 336 сом/мес
В рассрочку на 24 мес
Скидка по промокоду:
Кешбэк 30%: 44 648 баллов на Lerna
Полный курс по Data Science
Длительность: 13,5 мес
Старт курса: 10 июля
Заполните контактные данные
Имя
Телефон
E-mail
Промокод
Название компании
Отправить заявку
Ознакомиться с условиями публичного договора
success
error
warning
Отзывы студентов
В целом я довольна выбранным курсом и с радостью советую его друзьям. Хотя трудно передать словами эмоции от верно написанной с первого раза программы.
Достоинства:
Это действительно полный курс по Data Science…
Олеся
Норицына
Курс оправдывает ожидания. Вопрос поиска работы не стоял, так как занимаю хорошую должность в достойной компании.
Достоинства:
 — подробное руководство по каждому шагу...
Андрей
Ефимов
Мой опыт работы — три года в бизнес-аналитике. Курс Skillfactory «Профессия Data Scientist» помог сделать прорыв в карьере. Благодаря курсу мой доход вырос на 70%. И это я еще не окончила его. Спасибо большое за такую возможность роста!
marina71559
Обучаюсь на курсе по Data Science, с нуля. Интересно, но сразу скажу, что для новичка темп обучения довольно высок. Если сможете выделять по 3 часа на учебу ежедневно и обладаете достаточной усидчивостью и силой воли, то справитесь...
sergiy47
Уже около года прохожу обучение на курсе по Data Sciense. И могу с уверенностью сказать, что это очень достойный курс. Много практики, тестов, аттестаций и проектов, вебинаров — как со специалистами по Python, анализу данных, математике и машинному обучению…
Дмитрий
Прохожу курс по Data Science. 20 лет назад проходил сертификацию MCSD (VC ++, SQL). Работал PM по промышленной автоматизации и инфраструктурной по строительству. Этот рынок труда существенно деградировал. Полученные ранее знания даже без практического опыта…
Дмитрий